One-dimensional embedded cluster approach to modeling CdS nanowires.
نویسندگان
چکیده
We present an embedded cluster model to treat one-dimensional nanostructures, using a hybrid quantum mechanical/molecular mechanical (QM/MM) approach. A segment of the nanowire (circa 50 atoms) is treated at a QM level of theory, using density functional theory (DFT) with a hybrid exchange-correlation functional. This segment is then embedded in a further length of wire, treated at an MM level of theory. The interaction between the QM and MM regions is provided by an embedding potential located at the interface. Point charges are placed beyond the ends of the wire segment in order to reproduce the Madelung potential of the infinite system. We test our model on the ideal system of a CdS linear chain, benchmarking our results against calculations performed on a periodic system using a plane-wave DFT approach, with electron exchange and correlation treated at the same level of approximation in both methods. We perform our tests on pure CdS and, importantly, the system containing a single In or Cu impurity. We find excellent agreement in the determined electronic structure using the two approaches, validating our embedded cluster model. As the hybrid QM/MM model avoids spurious interactions between charged defects, it will be of benefit to the analysis of the role of defects in nanowire materials, which is currently a major challenge using a plane-wave DFT approach. Other advantages of the hybrid QM/MM approach over plane-wave DFT include the ability to calculate ionization energies with an absolute reference and access to high levels of theory for the QM region which are not incorporated in most plane-wave codes. Our results concur with available experimental data.
منابع مشابه
Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites
One-dimensional (1D) CdS@ZnS core-shell nanocomposites were successfully synthesized via a two-step solvothermal method. Preformed CdS nanowires with a diameter of ca. 45 nm and a length up to several tens of micrometers were coated with a layer of ZnS shell by the reaction of zinc acetate and thiourea at 180 °C for 10 h. It was found that uniform ZnS shell was composed of ZnS nanoparticles wit...
متن کاملConstructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis.
A ternary hybrid structure of one-dimensional (1D) silver nanowire-doped reduced graphene oxide (RGO) integrated with a CdS nanowire (NW) network has been fabricated via a simple electrostatic self-assembly method followed by a hydrothermal reduction process. The electrical conductivity of RGO can be significantly enhanced by opening up new conduction channels by bridging the high resistance gr...
متن کاملRational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light.
High-quality one-dimensional WO3/CdS core/shell nanowire arrays used as photoanodes in photoelectrochemical (PEC) cells were for the first time prepared via a rational, two-step chemical vapor deposition process. The narrow band-gap CdS shell was homogeneously coated on the entire surface of as-grown WO3 core nanowire arrays, forming coaxial heterostructures. The one-dimensional core/shell hete...
متن کاملStudy the Surface Effect on the Buckling of Nanowires Embedded in Winkler–Pasternak Elastic Medium Based on a Nonlocal Theory
Nano structures such as nanowires, nanobeams and nanoplates have been investigated widely for their innovative properties. In this paper the buckling of nanowires surrounded in a Winkler - Pasternak elastic medium has been examined based on the nonlocal Euler-Bernoully model with considering the surface effects. In the following a parametric study that explores the influence of numerous physica...
متن کاملSolution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure
Kesterite Cu2ZnSnS4 (CZTS) semiconductor has been demonstrated to be a promising alternative absorber in thin film solar cell in virtue of its earth-abundant, non-toxic element, suitable optical and electrical properties. Herein, a low-cost and non-toxic method that based on the thermal decomposition and reaction of metal-thiourea-oxygen sol-gel complexes to synthesize CZTS thin film was develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 139 12 شماره
صفحات -
تاریخ انتشار 2013